Stability investigation of hydraulic interconnected suspension system of a vehicle with a quaternion neural network controller
Authors
Abstract:
Using hydraulic interconnected suspension (HIS) system to improve the stability of the vehicles is a matter of recent interest of many scholars. In this paper, application of this kind of suspension system and its impact on the stability of the vehicle are studied. The governing dynamic relations of the system are presented, using free body diagram, Newton-Euler motion equations, and relations related to the mass flow rate of fluid. By completing the design of the passive suspension system and the hydraulic interconnected suspension system and employing the half car model in the transverse direction with four degree of freedom, Matlab (Simulink) software is used to investigate and compare the body and wheel responses of the vehicle in exposure to road surface roughness. In the end, quaternion neural network controller has been used due to the obtained nonlinear equations in interaction of suspension system as well as the coupled differential equations. Using quaternion neural network controller, the results indicated that the stability of vehicle and ride comfort are increased and also more smooth responses are generated.
similar resources
A Neural Network Sliding Controller for Active Vehicle Suspension
The hydraulic active suspension systems have certain nonlinear and time-varying behaviors. It is difficult to establish an appropriate dynamic model for model-based controller design. Here a novel neural network based sliding mode control is proposed by combining the advantages of the adaptive, radial basis function neural network and sliding mode control strategies to release the model informa...
full textNeural Network-Based Identification and Approximate Predictive Control of a Servo-Hydraulic Vehicle Suspension System
This paper presents multi-layer feedforward neural network-based identification and approximate predictive controller (NNAPC) for a two degree-of-freedom (DOF), quarter-car servohydraulic vehicle suspension system. The nonlinear dynamics of the servo-hydraulic actuator is incorporated in the suspension model. A suspension travel controller is developed to improve the ride comfort and handling q...
full textNeural network based feedback linearization control of a servo-hydraulic vehicle suspension system
This paper presents the design of a neural network based feedback linearization (NNFBL) controller for a two degree-offreedom (DOF), quarter-car, servo-hydraulic vehicle suspension system. The main objective of the direct adaptive NNFBL controller is to improve the system’s ride comfort and handling quality. A feedforward, multi-layer perceptron (MLP) neural network (NN) model that is well suit...
full textSystem Identification and Neural Network Based Pid Control of Servo - Hydraulic Vehicle Suspension System
This paper presents the system identification and design of a neural network based Proportional, Integral and Derivative (PID) controller for a two degree of freedom (2DOF), quarter-car active suspension system. The controller design consists of a PID controller in a feedback loop and a neural network feedforward controller for the suspension travel to improve the vehicle ride comfort and handl...
full textInterconnected vehicle suspension
This paper introduces a class of passive interconnected suspensions, defined mathematically in terms of their mechanical admittance matrices, with the purpose of providing greater freedom to specify independently bounce, pitch, roll, and warp dynamics than conventional (passive) suspension arrangements. Two alternative realization schemes are described that are capable of implementing this clas...
full textMy Resources
Journal title
volume 20 issue 1
pages 129- 151
publication date 2019-03-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023